Math Meth Oper Res (2000) 52:413-439 ]
(2000) Mathematical Methods

of Operations Research
© Springer-Verlag 2000

A branch-and-bound algorithm for the
resource-constrained project scheduling problem

U. Dorndorf, E. Pesch, T. Phan-Huy

University of Bonn, Faculty of Economics, BWL III, Adenauerallee 24-42, D-53113 Bonn,
Germany (e-mail: udorndorf@acm.org, e.pesch@uni-bonn.de, phanhuy@toan.de)

Abstract. We describe a time-oriented branch-and-bound algorithm for the
resource-constrained project scheduling problem which explores the set of
active schedules by enumerating possible activity start times. The algorithm
uses constraint-propagation techniques that exploit the temporal and resource
constraints of the problem in order to reduce the search space. Computational
experiments with large, systematically generated benchmark test sets, ranging
in size from thirty to one hundred and twenty activities per problem instance,
show that the algorithm scales well and is competitive with other exact solu-
tion approaches. The computational results show that the most difficult
problems occur when scarce resource supply and the structure of the resource
demand cause a problem to be highly disjunctive.

Key words: resource-constrained project scheduling, constraint propagation

1 Introduction

Resource-constrained project scheduling addresses the task of allocating
scarce resources over time in order to perform a set of activities, subject to
constraints on the order in which the activities may be executed. The objective
considered in this paper is to minimise the project duration, i.e. the maximum
of the completion times of all activities. Due to its general nature, the resource-
constrained project scheduling problem (RCPSP) has important applications
in diverse areas such as make-to-order production planning or construction
engineering. Recent surveys of resource-constrained project scheduling have
been given by Brucker et al. (1999), Herroelen et al. (1998), Kolisch and
Padman (1997) and Elmaghraby (1995).

Using the classification scheme for project scheduling described by Brucker
et al. (1999), which extends the well known three-field classification scheme



414 U. Dorndorf et al.

for machine scheduling, we will denote the problem considered in this paper
with PS|prec|Cmax, for (a) project scheduling with (b) precedence constraints
and (c) the objective of minimising the maximum completion time. In the
classification scheme developed by Herroelen et al. (1999) the problem can be
characterised as m, 1|cpm|Cpax.

It is well known that, as an extension of the job shop scheduling problem,
the problem PS|prec|Cmax is A P-hard (Btazewicz et al., 1983). Most exact
solution methods are therefore based on branch-and-bound search. Beginning
with the work of Johnson (1967), a great number of branch-and-bound algo-
rithms have been developed, and we refer the reader to the survey papers
mentioned above for a description and classification of the various ap-
proaches. Currently, the most effective exact algorithms seem to be the ones of
Demeulemeester and Herroelen (1997); Sprecher (1997); Mingozzi et al.
(1998); Brucker et al. (1998) and the procedures of Klein and Scholl (1998a,b,
see also Klein (1999)) which can solve a generalised version of the the problem
PS|prec|Crax.-

In this paper, we study a time-oriented, constraint propagation based
approach to project scheduling. We describe a branch-and-bound algorithm
that enumerates possible activity start times based on the idea that, at a given
node of the search tree, an activity must either start as early as possible or be
delayed. A central feature of the algorithm is the application of constraint
propagation techniques that actively exploit the temporal and resource con-
straints during the search in order to narrow down the set of possible activity
start times and thus reduce the search space. Further reduction of the search
effort is achieved by enforcing some necessary conditions that must be met by
active schedules.

One of the main advantages of the time-oriented branching scheme is its
conceptual simplicity which allows to modify and extend the approach for
related practical scheduling problems that are often complicated by additional
constraints. Furthermore, the constraint propagation techniques that we use
are not custom-tailored for the problem PS|prec|Chnax but are of an elemen-
tary nature and have a wide applicability.

The first time-oriented branching schemes for the problem PS|prec|Cpax
have been described by Elmaghraby (1977) and Talbot and Patterson (1978).
The common idea behind these algorithms is to branch over all possible start
time assignments of the next activity to be scheduled, and the number of child
nodes generated at a given node of the search tree thus depends on the selected
activity. Carlier and Latapie (1991) have proposed a binary search scheme
in which branching consists of selecting an activity and splitting its interval
of possible start times into two intervals of equal size. Martin and Shmoys
(1996) have developed a time oriented algorithm for the job shop scheduling
problem. Caseau and Laburthe (1996) have independently designed a branch-
and-bound algorithm for a multi-mode project scheduling problem which can
be classified as MPS|prec|Ciax in the scheme of Brucker et al. (1999). For the
single mode case the algorithm uses the same branching strategy as the pro-
cedure of Martin and Shmoys, which schedules an activity at its earliest start
time and delays it upon backtracking until the earliest completion time of
some other activity, resulting in a binary search tree. The branching scheme
described in this paper also makes use of this elementary approach. The
branching strategy described by Caseau and Laburthe has also been used in
modified form in the study of Baptiste et al. (1999). Heipcke and Colombani



Branch-and-bound algorithm for the RCPSP 415

(1997) have developed an algorithm for a version of the problem PS|prec|Cmax
in which resource supply and demand may vary over time; the branching
scheme of their algorithm is also binary; an activity is scheduled at its earliest
start time and delayed upon backtracking by a single unit of time. An unusual
feature of their algorithm is that activities are in general not scheduled in
order of increasing start times.

In the remainder of this paper we proceed as follows. Section 2 formally
states the optimisation model and introduces the notation. Because constraint
propagation plays a central role in the algorithm, Section 3 presents a basic
propagation algorithm and the tests used to rule out uninteresting activity
start times. Section 4 then describes the branch-and-bound algorithm. Finally,
the computational results obtained for a large number of benchmark test
problems are discussed in Section 5.

2 The problem

The problem PS|prec|Cnax is a generalisation of important scheduling prob-
lems like the job shop scheduling problem or the open shop scheduling prob-
lem and can be described as follows: a finite set of activities ¥ = {I,...,n}
has to be scheduled with the objective of minimising the project duration, i.e.
the maximum of the completion times of all operations which is also known as
the makespan. Each activity i € ¥~ has a specific processing time p;, which is
known in advance, and a start time S;, which is a decision variable. By
choosing sufficiently small time units we can always assume that the process-
ing times (start times) are positive (non-negative) integer values. We further
require that activities may not be interrupted during their processing (non-
preemption).

In general, activities cannot be processed independently from each other
due to limited resources and additional technological requirements. The prob-
lem PS|prec|Cnax considers two kinds of constraints: precedence constraints
and resource constraints.

1. Precedence constraints specify a fixed processing order between pairs of
activities. Precedence constraints cover technological requirements of the
kind that some activity i must finish before another activity j can start, for
instance, if the output of i is the input of j.

2. Resource constraints model the resource demand of activities in a sched-
uling environment with scarce resource supply. More precisely, an activity i
requires 1 € Ny units of one or several resources k € #, where # denotes
the set of all resources. We further assume for the sake of simplicity that
resource k is available in constant amount Ry, although many of the results
derived in this work also apply if we consider a time-varying resource
supply instead. Clearly, a feasible solution only exists if ry < Ry for all
activities and resources. While an activity is in process, the required re-
source units are exclusively assigned to it and are not available for other
activities. The set of activities which require a resource k is denoted with
Vi={ie?V |rix > 0}.

A precedence constraint (i, j) can be obviously modelled by imposing a mini-
mal time lag between the start times of the two activities i and j. This temporal



416 U. Dorndorf et al.

constraint has the general form S; + p; < S;. We denote with & the set of all
precedence constraints. A resource constraint for a given resource k ensures
that in any processing period the resource demand never exceeds the resource
supply Ry. It is possible to define these resource constraints in a quite ele-
gant way by using the concept of a slack function which will be introduced
later. For the time being it is sufficient to define the auxiliary set #7(¢) of ac-
tivities in process at time ¢. The problem PS|prec|Cnax can then be stated as
follows:

min{mg{x{S,» +p,-}} s.t. (i)
ey

> rk <R, VieNy, Vkea, (i)

i€V (1)

S;eNy, Viev . (iv)

A schedule S = (Si,...,S},) is an assignment of all start times. We say
that S is feasible if it satisfies both all precedence constraints (ii) and all re-
source constraints (iii). Thus, solving the problem PS|prec|Cmax is equivalent
to finding a feasible schedule with a minimal makespan.

Given the set of all feasible schedules we can define a partial relation <,
where S < S’ if no activity in S starts later than in S’. Further, S < S’ if
S < 8’ and additionally at least one activity in S starts earlier. A schedule S is
then said to be active, if it is feasible and there exists no other feasible schedule
S’ such that S’ < S. In other words, S is active, if no activity can be started
earlier without violating either one of the precedence or resource constraints.
Inversely, a schedule S is not active, if an activity i can be started earlier than
at time S; without having to increase the start time of some other activity.
Intuitively, we will then say for short that i can be left-shifted in S. The defi-
nition of active schedules immediately leads to the following simple and well
known observation: any solution method which minimises the makespan
function can focus on generating active schedules, since for every non-active
schedule there always exists an active schedule with an identical or even lower
makespan.

The branch-and-bound algorithm is based on the idea of repeatedly re-
ducing the set of possible start times of an activity until all activities are
scheduled. Each activity i € ¥ has a current domain A; < Ny of possible start
times. Since most of the constraint propagation methods applied can only
deduce a domain reduction if the current domains are finite, we will assume
that some upper bound UB on the optimal makespan is known so that
A4; = [0, UB — p;] holds. If no initial upper bound is given, then we use the
trivial upper bound ), , p;. The set of current domains of all activities is
denoted with A := {4;|i € ¥"}. For an activity i € ¥", ES;(4) := min 4; de-
notes its earliest start time, and LS;(4) := max 4; denotes its latest start time.
Similarly, EC;(4) := ES;(4) + p; is the earliest completion time and LC;(4)



Branch-and-bound algorithm for the RCPSP 417

:= LS;(4) + p; the latest completion time of i. If no confusion is possible, then
we will write ES;, LS;, etc.

A schedule S is called domain feasible with respect to a set 4 of current
domains if the current domain of each activity still contains the start time of
this activity in S. Given a set 4 of current domains, the set of all activities #~
can be naturally partitioned into a set of scheduled and non-scheduled (free)
activities. Clearly, if the current domain of an activity i contains exactly one
entry, then / must start at that time and can be considered as scheduled. Hence
V3(4) ;= {ieV||4;] =1} is the set of scheduled activities, and 7"/ (4) :=
{ie?’||4;] > 1} is the set of free activities. For all scheduled activities
i€ 77°(4), the start time is defined through S;(4) := ES;(4) = LS;(4).

3 Constraint propagation

An exact solution method for solving the problem PS|prec|Cpax generally
consists of two components: (1) a search strategy which organises the enu-
meration of all potential solutions and (2) a search space reduction strategy
which diminishes the number of potential solutions. In this section, we will
discuss search space reduction strategies based on constraint propagation
which has become more and more popular in the last decades due to its ele-
mentary nature. Constraint propagation has its origins in the field of con-
straint programming which models combinatorial search problems as
special instances of the constraint satisfaction problem (CSP). The origins of
constraint propagation go back to Waltz (1975) who developed a now well-
known filtering algorithm for labelling three-dimensional line diagrams.

The basic idea of constraint propagation is to evaluate implicit constraints
through the repeated analysis of the variables, domains and constraints that
describe a specific problem instance. This analysis makes it possible to detect
and remove inconsistent start time assignments that cannot participate in a
feasible schedule by a merely partial problem analysis. Different concepts of
consistency which may serve as a theoretical background for propagation al-
gorithms have been defined; general overviews are given by Kumar (1992) and
Tsang (1993), as well as Dorndorf et al. (2000), who focus on scheduling-
related propagation techniques.

In general, establishing full consistency by removing a// inconsistent start
time assignments is prohibitively expensive due to a computational complexity
which grows exponentially with the number of activities. Therefore, the ap-
plication of constraint propagation is only sensible if we content ourselves
with approximations. An important task is to derive simple rules which lead
to efficient search space reductions, but at the same time can be implemented
efficiently. These rules are called consistency tests and are generally described
through a condition—instruction pair .«/ and 4. Intuitively, the semantics of a
consistency test are as follows: whenever condition .o/ is satisfied, % has to be
executed. .o/ may be, for instance, an equation or inequation, while 4 may be
a domain reduction rule. We will use the shorthand notation .o = % for
consistency tests.

Given a set of consistency tests, these tests have to be applied in an iter-
ative fashion rather than only once in order to obtain the maximal domain
reduction possible. The reason for this is that, after the reduction of some
domains, additional domain adjustments can possibly be derived using some



418 U. Dorndorf et al.

of the tests which have previously failed in deducing any reductions. Thus, the
deduction process is carried out until no more adjustments are possible or, in
other words, until the set 4 of current domains becomes a fixed point. It is
important to mention that the fixed point computed does not have to be
unique and usually depends upon the order of the application of the consis-
tency tests. Thus, in general, an application order may induce a stronger
search space reduction than another application order. However, we will only
study monotonous consistency tests for which the order of application does not
affect the outcome of the domain reduction process (Dorndorf et al., 2000).

The iterative application of the consistency tests is controlled by the con-
straint propagation algorithm; the propagation algorithm used in our imple-
mentation is a variant of the AC-5 arc-consistency algorithm described by
Van Hentenryck et al. (1992). Like all advanced consistency algorithms, it
works with a queue containing elements to reconsider. A queue element con-
sists of a constraint and a value (or a set of values) that has been removed
from the domain of some variable in the constraint and justifies the need to
reconsider the constraint, i.e. to re-apply a consistency test. In each iteration
of the propagation algorithm, a constraint/value pair is removed from the
queue and all consistency tests are evaluated that are associated with this
constraint. If any of these tests removes a value x from a domain, say from 4;,
then all constraints which contain the variable S; are stored in the queue, to-
gether with the information that x has been removed from 4;. This process is
repeated until the queue is empty and the fixed point is reached. The reason
for storing a value together with a constraint is that this may allow to use a
more efficient algorithm in a consistency test.

Let us now turn to the consistency tests that are used within our algorithm.
A precedence constraint determines the sequence in which two specific activ-
ities i and j have to be processed. If, for instance, activity i has to finish before
activity j can start then the earliest start time of j has to be greater than or
equal to the earliest completion time of i. Likewise, an upper bound for the
latest completion time of i is the latest start time of j. This implies the follow-
ing precedence consistency test:

4; = A\|LS; — pi, ],

(17 J) € éa(A) = {A] = Aj\[O,ES, —|—p,[

When used within the constraint propagation algorithm, this test, of course,
leads to the same result as a “forward-backward” time window calculation in
a project network. As some of the consistency tests discussed below may dis-
cover new precedence constraints, which must hold in addition to those given
in the original problem, the set of all precedence constraints depends on A4 and
is denoted with &(4).

Interval consistency tests are based on the comparison of resource supply
and demand within a given time interval. Each activity requires a total
amount of work wy, := rgp; from resource k. A time interval is said to be
capacity consistent if the amount of work requested by all activities within this
time interval can be matched by the amount of work supplied. The work of an
activity 7 that must fall into a time interval [z, ,[ may be smaller than wy, and
it depends upon the current domain of i. We therefore introduce the concept
of interval processing times which has been first proposed by Lopez et al.



Branch-and-bound algorithm for the RCPSP 419

(1992) under the name of energetic reasoning. The interval processing time
pi(t1,1p) is the smallest amount of time during which i has to be processed
within [¢1, ;. Five possibilities have to be considered: (1) i can be completely
contained within the interval, (2) overlap the entire interval, (3) have a mini-
mum processing time in the interval when started as early as possible or (4)
have a minimum processing time when started as late as possible. The fifth
situation applies whenever, given the current domains, i does not necessarily
have to be processed within the time interval. Consequently,

p,'(tl,lz) = max{07min{pi, t—t,ECi—t1,t) — LS,}}

The corresponding interval work is given by wy(t1, ) = ryapi(t1,t2). The
interval work of a subset of activities .o/ < 77 is defined through W (.<Z, 1, )
= ieaWik(t1,12). We can now define the slack of a time interval with re-
spect to a set of activities as the difference between work supply and demand
within the time interval:

slack (ot t1,0) == Ry - (ta — 1) — W(A, 11, 12).

Since the slack function obviously depends on the given set 4 of current
domains, we will write slack 4(.oZ, t|, ;) whenever necessary. An interval [, ;|
is capacity consistent if slack (7%, t1,t;) = 0 for every resource k. An in-depth
survey of consistency tests based on the notion of interval capacity is given by
Dorndorf et al. (1999).

An important special case of the interval capacity consistency condition is
obtained when we consider time intervals of unit width. If, for an activity
i € ¥ and some time ¢, slack(?3\{i},t,t+ 1) is less than the required re-
source amount ry, then activity /i cannot be processed at time ¢ and must
hence not start in the interval |t — p;, #]. This leads to the following test, which
is also known under the name timetable-based constraint propagation (Le
Pape, 1994).

SlaCkA("/k\{l.}, tt+ 1) <rg=d;:= A,’\]l — Pi, l}.

The computational analysis will show that the most difficult problem
instances tend to have a high share of disjunctive activities. Two activities
i,j € ¥~ are in disjunction if, due to limited resource availability, i and j cannot
be processed simultaneously, i.e. if ry + i > Ry for some resource k. The
following consistency tests, which are originally based on interval capacity,
therefore address this aspect.

For a given pair of activities 7, j in disjunction, the well known pair test,
which has been proposed by Carlier and Pinson (1989), can be applied:

Clearly, if the condition on the left hand side is satisfied, i must precede j
and we can update the set of precedence constraints.

The consistency test for disjunctive activity pairs can be extended by con-
sidering larger sets .7 of pairwise disjunctive activities, which must be pro-
cessed sequentially. Given such a set .7, we can check for the existence of a
feasible schedule under the hypothesis that some activity i € .o/ is not sched-
uled as last activity in .. If no such schedule exists then we have falsified the



420 U. Dorndorf et al.

hypothesis and can conclude that i must be processed after all other activities
in .o/; we can thus add the corresponding precedence constraints and adjust
the earliest start time of i to the earliest possible completion time of all activ-
ities in .7\ {i}. This value is equal to the minimal completion time of a corre-
sponding one-machine problem with release dates and due dates, which is
itself 4 2-hard; it is therefore usually approximated with the solution of the
corresponding preemptive one-machine problem, denoted with EC?"(.o/\{i}),
which can be computed efficiently. The resulting consistency test, which is also
due to Carlier and Pinson (1989), can be formalised as follows:

)= EA)v{(: )] e \{it};

= A0, ECP"(/\{i})[-

max LS; —min ES; < pj:>{ 64
jed\{i} jed e

A symmetrical test can be applied to show that some activity must be pro-
cessed before a set of other activities. The tests are called input/output tests and
are sometimes also referred to as immediate selection.

Let us now consider the question how the set .7 should be chosen. Several
algorithms have been proposed which, given a set ¥ of pairwise disjunctive
activities, can apply the consistency test for all subsets .o/ = ¥/ with low
polynomial effort (cf. Dorndorf et al., 2000); the implementation used in
our procedure is based on the algonthm of Nuljten (1994) and requlres effort

O(|7"|*). The question to be answered thus is how to choose ¥~ < 7.
Clearly, as the algorithm will apply the test for all subsets of ¥/, the set ¥/
itself should be maximal in the sense that none of the activities in 7"\ 7"’ is in
disjunction with all those in ¥~ (maximal clique).

The possible choices of ¥’ can be determined by considering an undirected
graph G with nodes corresponding to activities and edges between any pair of
disjunctive activities, i.e. pairs i,j € ¥~ for which ry + rix = Ry for some re-
source k € #. A decomposition of G into all maximal cliques then gives all
possible choices of ¥”'. Although the number of maximal cliques may in gen-
eral be exponential in the size of the graph, the decomposition can for practi-
cal purposes be quickly calculated with the algorithm of Bron and Kerbosch
(1973). Nevertheless, the number of maximal cliques may still be large and
many of these cliques may be overlapping. As the gain of information de-
duced by the consistency tests may be outweighed by the computational effort
for applying the tests, if this is done too frequently, we restrict our attention to
a small number of cliques chosen at the beginning of the search according to
the following heuristic suggested by Phan Huy (1999).

Given the decomposition of G into all maximal cliques, the first phase of
the heuristic consists of repeatedly selecting a maximal clique which contains
the largest number of edges that are not already covered by some previously
chosen clique, until all edges are covered. In the second phase, the algorithm
repeatedly chooses an additional clique in order of decreasing size, if the new
clique does not overlap with any previously chosen clique for more than two
thirds.

Other heuristics for chosing some sets ¥ in order to apply the input/
output tests for the problem PS|prec|Cpax have been desribed by Brucker et
al. (1998) and Baptiste et al. (1999); in contrast to the approach described
here, these heuristics are not based on an initial decomposition into all maxi-
mal cliques.



Branch-and-bound algorithm for the RCPSP 421

4 Branch-and-Bound algorithm

The branch-and-bound algorithm uses a time-oriented branching scheme that
can generate all active schedules, so that traversing the search tree will lead
to an optimal solution. Inversely, the branching scheme avoids constructing
non-active schedules, which cuts down the search space considerably. As a
peculiarity our algorithm does not explicitly compute any lower bounds. In-
stead, the bound-oriented fathoming of nodes is a useful by-product of con-
straint propagation techniques, that have to be applied anyway in the
“branching” part of the algorithm. The search space is further reduced by
adding constraints that must be satisfied by all active schedules that can be
developed from a given node, and through the application of a simple left-
shift dominance test.

4.1 Branching scheme

The branching structure is based on a simple time-oriented schedule genera-
tion scheme, which results in a binary search tree. Each node o of the search
tree is associated a set A(x) = {4;(«)|i€ 7"} of current domains, which
uniquely determine the sets 7"*(A(x)) and ¥/ (A(x)) of scheduled and non-
scheduled activities, respectively. In order to simplify the notation we will
write 77 (o) instead of 7°* (4(x)), etc., whenever possible. Generating a spe-
cific schedule is equivalent to reducmg the current domains until all activities
are appropriately scheduled. One method of domain reduction is the applica-
tion of constraint propagation at every node of the search tree. Since in gen-
eral, however, constraint propagation alone does not schedule all activities,
some activities additionally have to be scheduled by an explicit assignment of
their start time variables.

At every node o of the search tree an unscheduled activity j e 7/ (a) is
chosen and two child nodes are generated. Denoting the left child node with
/(o) and the right child node with r(a), the branching scheme relies on the
following simple node generation rule.

I(): Start j at its earliest start ES;(«) by setting S;(/(a)) := ESj(x).
r(a): Increase the earliest start of j by choosing ES i(r(a)) > ES;(o).

A complete specification of the branching scheme now requires the answer
to two questions. The first question deals with the problem of which activity
je 7/ (a) to choose in node o. The second question is how the earliest start
time of j should be increased in (). We will first describe the choice of an
activity j and then derive an earliest start time adjustment for the right child
node.

4.2 Activity selection

At node o, an activity can be selected for branching if it is free and non-
delayed. For the time being, it is not necessary to describe this attrlbute more
closely. We only assume that the set of non-delayed activities 7"/ ( ) is a non-



422 U. Dorndorf et al.

empty subset of the set of free activities. An activity j is then selected accord-
ing to the following rule:

Choose j € 7/ («), such that ES; = t(o) where t(o) is the schedule time,
which is defined as #(a) := min, v, ES;(a).

Ties are first broken by selecting an activity which satisfies some secondary
criterion, then randomly. In general, we use the minimal time slack, i.e. |4;|, as
secondary criterion; this means that we use the well known first fail principle
which consists of first instantiating the variable with the fewest remaining
possible values. We will denote the activity chosen in o as act(a).

After the description of the selection rule, we are left with the problem of
how to identify the set of non-delayed activities. Of course, we can always set
/' (a) := ¥/ (x). This, however, is not sensible, since choosing an arbitrary
free activity may lead to a non-active schedule. We will therefore show how to
specify the set of delayed activities, so as to capture the notion of active
schedules more closely.

The precedence and unit interval consistency tests that are applied within
the constraint propagation algorithm affect the earliest activity start times as
follows. Let pc;(4) be the minimal start time of j if only the precedence con-
straints (7, j) between activities i in ¥"*(4) and j are considered:

pei(d) = ien;l/%é){Si +pil (i,)) €6}

Here, we have used the convention that the maximum of the empty set is 0.
Let further rc;(4) be the minimal start time of j if additionally resource con-
straints are considered:

rej(4) ;== min {{|Vke ZNt' €t,... .t +p;l:
' 1=pe;(4) '

slack (77 \{j}. ' 0+ 1) = i}
Then, obviously,
ES;(4) = rcj(4) = pc;(4).
A schedule S can be naturally identified with a set of current domains, where
each domain 4; contains the corresponding start time, i.e. 4; := {S;}. This
justifies the notation rc;(.S) and pc;(S). Clearly, S can only be active if for all

activities either a precedence constraint or insufficient resource capacity pre-
vents a left-shift. Thus, in any active schedule S, the identity

Sj = r¢i(S) (1)
holds for all j € #". Inversely, all schedules satisfying this condition are active.
This motivates the following definition of the set of free and non-delayed

activities based on the precedence and resource feasible earliest start times:

1) = {j € v/ (2) | ESj(@) = rej(@)}



Branch-and-bound algorithm for the RCPSP 423

This means that a free activity is a candidate for branching if a precedence
constraint or low slack prohibits a left shift of the activity. It is worth men-
tioning that this condition may not hold for a free activity which has ,been
delayed. The definition of the set of free and selectable activities ¥/ can
therefore also be interpreted as follows by considering the complementary set
¥ \7"/" of free and un-selectable activities: a delayed activity i remains un-
selectable until we know that the resource capacity “provided” by delaying i
has been used by some other activity. The following lemma which is formally
proven in Appendix A, justifies our choice of the set 7/

Lemma 1. If; at node o of the search tree, there is an unscheduled activity then
71" («) is not empty, or « cannot lead to an active schedule.

4.3 Delaying duration

The activity selection rule implies that in any schedule S developed from o the
condition S; > #(c) must hold for all i € ¥"/' (). But there might be free and
delayed activities i € 7"/ (2)\ 7"/ («) for which ES;(«) < #(e) and which could
therefore possibly be scheduled at a time earlier than #(«), either by the prop-
agation algorithm or through an explicit start time assignment, once they have
become selectable again. However, by using a similar argumentation as in the
proof of Lemma 1, it can be shown that this cannot happen if the resulting
schedule is active.

Lemma 2. In any active schedule developed from a node o of the search tree, all
free and delayed activities in the set ¥/ (a)\ 7"/ (c) start after 1(x).

It follows from the activity selection rule and from Lemma 2 that, in any
active schedule developed from «, no activity which was free at « can start
earlier than at time #(o). This implies that the slack at any time ¢ < #() does
not change in descendant nodes of « that lead to an active schedule. Further-
more, we can conclude that the predecessors of all activities that can start at
t(«) must already be scheduled at o. These observations can be used in several
ways.

Let us first return to the initial question of how to increase the earliest start
time of a selected activity j = act(a) if we branch to the right. A first simple
alternative is to delay the activity by a single time unit. However, we can do
better by observing that the resulting schedule S can only be active if either (1)
a precedence constraint or (2) low slack prohibits a left-shift of the selected
activity. Since the activity will be delayed by at least one time unit and be-
cause all predecessors are scheduled, the first case can be ruled out. The sec-
ond case requires that the slack of all activities except j is insufficient to the left
of S;j(«). This can only be the case if S;(«) matches the completion time of
some activity that shares resources with j.

Let %;:={k e #|ry >0} denote the set of resources required by an
activity i. The set of activities which share resources with activity j and finish
after the current schedule time #(o) can then be defined as

7)) =Aie \{J} i Ry # & A ECi(2) > 1(a)}-



424 U. Dorndorf et al.

If 77'(j) is not empty then the earliest start time of j can be adjusted by setting

ES;(r(2)) := min EC;(a).

ier”()

We can use the same argument together with Lemma 2 to re-adjust the
earliest start times of all free and delayed activities. At node «, before applying
constraint propagation and branching, we set

ESi(a) := lem%i{}l_) EC/(x), forallie v/ (a)\7/ (a).

Here, we have used the convention that the minimum of the empty set is zero.
In both cases, if the set 7”/(j) is empty then the node cannot lead to an active
schedule. Observe that the adjustment of the earliest start time will lead to an
empty domain for all delayed activities i for which LS; < #(«), i.e. for those
activities which have been “needlessly” delayed.

The fact that the slack in periods ¢ < #(2) remains constant in descendant
nodes also allows us to apply a simple left-shift dominance test. If, for any free
activity j € 7"/ (a) with p; > 0, the condition rc;(o) + p; < #(«) holds, i.e. if j
can resource and precedence-feasibly be scheduled so that it finishes not later
than at time #(o), then node o cannot lead to an active schedule.

4.4 Search strategy and properties of the branching scheme

The search tree is traversed in depth-first order until a leaf node is generated.
This happens whenever the set of free and selectable activities becomes empty,
ie. if 7"/'(«) = . This leaf node represents a solution if all activities are
scheduled. The makespan of an initial or improved schedule is, of course, used
as new upper bound. Backtracking occurs when a leaf node is reached or
when an inconsistency has been detected, i.e. when A4;() has become empty
for some activity i € 7.

The minimum possible depth of the tree is zero and is obtained if all ac-
tivities are scheduled through constraint propagation at the root node. The
maximum depth of the search tree that can occur in the worst case is reached
when branching to the very right side of the tree in the following way. Starting
at the root node, we can initially at most delay |77| — 1 activities. As delayed
activities remain un-selectable at least until some other activity is scheduled,
i.e. until we can conclude that the resource capacity, released by delaying ac-
tivities, has been used, we must then schedule some activity or backtracking
would be initiated. Next we can at most branch |#"| — 2 times to the right
before branching a single time to the left. By continuing in this way, we may
reach a theoretical worst case depth of 1/2|77|(|7"] + 1).

The time-oriented branching scheme can generate all active schedules, i.e.
if S'is an active schedule, then the search tree contains a leaf node « in which
all activities are scheduled and S; = S;(«) for all i e ¥". This completeness
property of the branching scheme follows from the fact that if S is domain
feasible in o, then it is also domain feasible in either /(a) or r(a); we can thus
construct a path in the tree along which (1) S remains domain feasible and (2)
the domains are continuously reduced until S is obtained. Inversely, all com-
plete schedules that are constructed are active.




Branch-and-bound algorithm for the RCPSP 425

5 Computational analysis
5.1 Implementation of the algorithm

The branch-and-bound algorithm has been implemented in C++ using the
constraint programming libraries ILoG SOLVER and ILOG SCHEDULER which
support the implementation of tree search algorithms that apply constraint
propagation at the nodes of the tree (Le Pape, 1994). The basic propagation
algorithm used in SOLVER is a variant of the AC-5 arc consistency algorithm of
Van Hentenryck et al. (1992).

The most important features of the SOLVER library are (1) fundamental
data types such as integer domain variables, (2) generic constraints upon these
variables together with corresponding domain reduction rules, e.g. linear
constraints on integer domain variables, (3) the propagation algorithm, (4)
classes for defining a search (branching) scheme, and (5) support for reversible
actions that are automatically undone upon backtracking, for instance the
definition and propagation of constraints. Based upon the generic data types
and algorithms found in SOLVER, the SCHEDULER library provides an object
model and algorithms that facilitate the development of scheduling applica-
tions. For instance, SCHEDULER includes classes for representing activities and
resources as well as associated constraints such as precedence or resource
constraints.

Besides the support for implementing backtracking algorithms and the ge-
neric propagation mechanism, we have used the following features of the li-
braries. The decision variables S; are represented as integer domain variables.
The precedence constraints and the corresponding consistency test are realised
through the built-in linear constraints provided by SoLVER. The resource con-
straints, the unit interval consistency test and the input/output tests are pro-
vided by ScHEDULER. For the administration of the temporal and resource
constraints we have used the activity and resource classes of SCHEDULER. The
disjunctive activity pair test is implemented as a generic disjunctive SOLVER
constraint on integer domain variables.

The logic of the branch-and-bound algorithm described in Section 4 has
been hand coded. By using the SOLVER search tree classes, the amount of code
required for the branching and backtracking part has been kept low.

All results reported for our algorithm in the following tables have been
obtained on a Pentium Pro/200 PC with Windows NT 4.0 as operating
system.

5.2 Test data

We have tested the algorithm on four large sets of benchmark problems that
were systematically generated with the problem generator ProGen (Kolisch et
al., 1995), which allows to specify several control parameters that characterise
a resulting problem instance:

— The network complexity C > 1 indicates the average number of immediate
successors of an activity and is a measure of the complexity of the prece-
dence constraints.

— The resource factor RF € [0, 1] indicates the average percentage of resources



426 U. Dorndorf et al.

Table 1. Characteristics of the test sets

Test Size Fixed parameters Variable parameters
set

[77] 12| Di Tie C RF RS
330 480 30 4 {1...10} {1...10} 1.5 0.25 0.2
j60 480 60 4 {1...10} {1...10} 1.8 0.50 0.5
390 480 90 4 {1...10} {1...10} 2.1 0.75 0.7
1.00 1.0
j120 600 120 4 {1...10} {1...10} 1.5 0.25 0.1
1.8 0.50 0.2
2.1 0.75 0.3
1.00 0.4
0.5

required to process an activity. It takes a value of 1 if every activity requires
every resource.

— The resource strength RS € [0, 1] describes the average tightness of the re-
source constraints. A resource strength of 0 indicates maximal tightness,
which results from the minimal feasible resource availability, i.e. a supply
equal to the maximum requirement of any single activity. For a resource
strength of 1, the earliest start schedule does not contain any resource
conflicts.

Table 1 shows the detailed characteristics of the test sets, which are collected
in the project scheduling problem library PSPLIB (Kolisch and Sprecher,
1996; Kolisch et al., 1999). The number of activities, |#”|, does not include the
fictitious start and end activities. All processing times and resource require-
ments were randomly drawn from the set {1,...,10}. The first three test sets
with 30, 60, and 90 activities per problem contain ten instances for each
combination of the three control parameter values shown in the three right-
most columns and four top-most rows of the table, leading to a total number
of 480 instances. The last test set, which contains problems with 120 activities,
has been generated with different, more difficult resource strength values;
again, the set contains 10 problem instances for each combination of the
variable parameters shown in the last 5 rows of the table, resulting in a total
number of 600 problems.

5.3 Bidirectional planning

When trying to solve a given problem instance, we apply our algorithm in
forward and backward direction (bidirectional planning). A problem can be
solved in backward fashion by simply reversing the project network and ap-
plying the algorithm to the resulting mirror-network. Forward and backward
scheduling methods have for instance been discussed by Li and Willis (1992)
and Klein (1998). While no scheduling direction is uniformly superior for all
test problems some instances are easier to solve in one direction than in the
other. Intuitively, a branch-and-bound algorithm works best if the difficult
part of the problem (bottleneck) is handled at the beginning of the search,
since otherwise a solution for the difficult subproblem has to be rediscovered
many times in different branches of the search tree. This means that if the



Branch-and-bound algorithm for the RCPSP 427

bottleneck is towards the beginning of the project then forward planning is
advantageous; otherwise, if the bottleneck is at the end then backward plan-
ning works best. Since it is hard to predict the location of the bottleneck in
order to choose a favourable planning direction, we simply proceed as fol-
lows. We allocate half of the run-time to solve the problem in forward direc-
tion; if the problem remains open after this time then we apply the algorithm
to the mirror problem, now using the makespan of the best schedule found so
far, if any, as initial upper bound.

5.4 Results

Table 2 shows the results obtained with the time-oriented branch-and-bound
algorithm for the smallest test set with 30 activities per problem. For a given
run time limit #y,, the table shows the average run time #,,s, the percentage of
problems solved to optimality within the time limit, and the remaining aver-
age and maximum deviation from the optimal solution (all optimal solutions
for this test set are known). For example, the table shows that within a time
limit of 300 seconds 95.4% or 458 problem instances can be solved to opti-
mality within an average run time of 19.4 seconds and a remaining average
deviation from the optimal solution of 0.05%. Within the maximum allowed
run time of 1800 seconds, 97.3% of the problems are solved. We found that
the difficulty of the problem instances for the time-oriented algorithm strongly
depends on the resource strength. While all instances with a resource strength
greater than 0.2 can be solved within less than 10 seconds, the problems with a
resource strength of 0.2 are considerably more difficult.

We must mention that the currently most effective algorithms for this
problem set, which have been developed by Klein and Scholl (1999a), De-
meulemeester and Herroelen (1997), Sprecher (2000) and Mingozzi et al.
(1998), perform better on this problem set and can solve more instances within
shorter time. For example, Klein (1999) reports that the scatter search algo-
rithm of Klein and Scholl can solve all problems within a maximum time of
361 seconds on a Pentium/166 computer.

Table 3 shows the results of our algorithm (T-O B&B) for the larger test
set with 60 activities per problem instance and compares them to the results of
the procedures of Brucker et al. (1998), Sprecher (2000), and Klein and Scholl
(1999a), which have been tested on the same problem set. The table shows the
algorithms in inverse historical order. For a given time limit, the table presents
the average run time, the percentage of problems solved to optimality, and the

Table 2. Results of exact algorithms for test set j30

Procedure tmax Lavg Opt. dev.opt
(sec) (sec) (%)

avg. max

(%) (%)
Time-oriented B&B 1 0.3 80.2 0.57 10.9
10 1.6 88.3 0.19 8.9
60 6.0 92.7 0.10 6.0
300 19.4 95.4 0.05 6.0

1800 66.4 97.3 0.03 4.5




428 U. Dorndorf et al.

Table 3. Results of exact algorithms for test set j60

Procedure tmax favg Opt. dev. " dev.; 5’ dev.; g,  dev.yp
(sec)  (sec) (%) avg. avg.
avg. max avg. max (%) (%)
(o) (%) (4 (%)
T-O B&B* 1 04 735 43 340 58 39.8 137 1.9
10 27 754 3.6 258 5.1 349 128 1.3
60 147 762 34 244 48 342 125 1.1
300 69.2 785 32 233 4.6 329 123 0.9
1800 386.0 80.0 3.0 226 4.5 303 12.0 0.8
Klein and Scholl® 10 37 69.6 - - 5.3 325 - -
60 17.8 733 - - 4.8 313 - -
300 717 760 - - 4.6 29.7 - -
1800 396.7 802 - - 4.3 29.7 - -
3600 736.1 819 - - 4.2 29.0 - -
Sprecher’ 300 88.1 727 - - 5.7 458 13.6 -
1800 4727 758 - - 5.3 40.7 13.0 -
Brucker et al.? 3600 - 67.9 - - 4.8 30.8 - -

¢ Based on the best known lower bounds collected in the PSPLIB.

® Based on the lower bounds of Brucker et al. (1998).

¢ Based on the best known solutions collected in the PSPLIB.

¢ Impl. in C++, results obtained on Pentium Pro/200 with Windows NT.

¢ Impl. in C++, results obtained on Pentium/166 with Windows 95.

7 Impl. in C++, results obtained on Pentium/166 with Linux.

¢ Impl. in C, results obtained on SUN/Sparc 20/801 (80 MHz) with Solaris 2.5.

average and maximum deviations from several lower bounds as well as the
average deviation from the best known solutions collected in the correspond-
ing benchmark file of the project scheduling problem library PSPLIB. Dashes
indicate that the corresponding information was not available. When com-
paring the results of different algorithms, the different computer platforms,
which are described in the table footnotes, must be taken into account; ob-
serve that we have not scaled the run time values.

The development of tight lower bounds for the problem PS|prec|Cpax is an
area of active research (see e.g. Klein and Scholl, 1999b; Brucker and Knust,
1999; Mohring et al., 1998; Heilmann and Schwindt, 1997). In Table 3 and in
the following tables we show the deviations of our algorithm with respect to
the best lower bounds that are currently available in the corresponding
PSPLIB benchmark files. A comparison of the performance of different algo-
rithms with respect to deviations from lower bounds is, of course, only
meaningful if the deviations are based on the same bounds. Table 3 and Table
4 below therefore also include deviations from the lower bounds of Brucker
et al. (1998), which have been used in the other studies. For easy reproduci-
bility we also give the deviations with respect to the precedence based lower
bound LB, which corresponds to the optimal solution of the resource relax-
ation of the problem.

Table 3 shows that the time-oriented algorithm is competitive with the
other procedures and that, for small run times, it achieves the highest per-
centage of optimally solved problems. For large run times, the algorithm of
Klein and Scholl seems to perform slightly better than our algorithm.

Table 4 compares the results of the time-oriented algorithm for the test set



Branch-and-bound algorithm for the RCPSP 429

Table 4. Results of exact algorithms for test set j90

Procedure tmax tavg Opt. dev.;5* dev.;z° dev..p, dev.yp*
(sec) (sec) (%) avg. avg.
avg. max avg. max (%) (%)
) ) ) )
T-O B&B* 1€ 0.6 71.2 4.7 35.5 6.2 434 13.4 2.2
10 3.0 74.2 4.0 28.8 5.4 37.0 12.4 1.5
60 15.9 75.0 38 26.5 5.2 37.0 12.2 1.4

300 76.1 76.0 3.7 26.4 5.1 36.1 12.1 1.3
Sprecher’ 300 120.3 61.5 - - 8.3 58.7 15.7 -

“ Based on the best known lower bounds collected in the PSPLIB.

b Based on the lower bounds of Brucker et al. (1998).

¢ Based on the best known solutions collected in the PSPLIB.

¢ Tmpl. in C++, results obtained on Pentium Pro/200 with Windows NT.
¢ Based only on forward planning.

7 Impl. in C++, results obtained on Pentium/166 with Linux.

Table 5. Results for test set j120

Procedure fmax Lavg Opt. dev.;p* dev..p, dev.yg®
(sec) (sec) (%) — avg. avg.
avg. max (%) (%)
(%) (%)
Time-oriented B&B 10 7.4 31.0 9.9 40.6 38.0 3.6
60 41.9 322 9.5 40.6 37.5 33
300 205.3 333 9.2 40.6 37.1 3.0

“ Based on the best known solutions collected in the PSPLIB.
b Based on the best known lower bounds collected in the PSPLIB.

j90 to those of the procedure of Sprecher (2000), which is the only algorithm
for which results on this test set have been published. The format of the table
is the same as in Table 3.

Table 5 shows the results of our algorithm for the largest test set with 120
activities per problem instance. Recall that this problem set has been gen-
erated with more difficult resource strength values than the three smaller sets.
As we will see in Table 6 below, this appears to be the main reason for the
strong decrease in the percentage of problems solved to optimality when
compared to the smaller test sets. We can also observe that the average devi-
ations from the lower bounds are roughly three times as high as for the
smaller and easier test sets with 60 and 90 activities per instance. As before,
the percentage of problems solved to optimality grows only slowly when the
run time is increased.

Data on the performance of other exact procedures for this problem set
has not been published. We have compared our results with respect to the
average deviation from the precedence based lower bound LB, to that of
several state of the art heuristics reported by Kolisch and Hartmann (1999),
who have analysed the performance of eight heuristics within a maximum
number of 1000 and 5000 iterations; an iteration corresponds to the applica-
tion of a serial or parallel schedule generation scheme. The minimal deviation
obtained by the best heuristic within 1000 iterations is 39.4%. Within the



430 U. Dorndorf et al.

Table 6. Influence of problem characteristics

Param. Value Optimal“ dev.;z®
i30 i60 190 i120 30 60 90 j120
(%) (%) (%) (%) (%) (%) (%) (%)
RS 0.1 - - - 2.5 - - - 19.9
0.2 81.7 30.8 20.0 9.2 0.2 11.6 14.0 13.4
0.3 - - - 25.0 - - - 8.3
0.4 - - - 49.2 - - - 3.9
0.5 100.0 83.3 84.2 80.8 0.0 1.2 0.8 0.8
0.7 100.0 100.0 100.0 - 0.0 0.0 0.0 -
1.0 100.0 100.0 100.0 - 0.0 0.0 0.0 -
RF 0.25 100.0 100.0 95.0 84.2 0.0 0.1 0.5 33
0.50 100.0 80.8 73.3 38.3 0.0 3.1 4.6 14.5
0.75 93.3 71.7 67.5 25.0 0.0 4.7 5.2 154
1.00 88.3 61.7 68.3 19.2 0.2 49 4.5 13.1
C 1.5 95.0 80.0 78.8 46.3 0.1 4.0 4.2 13.2
1.8 94.4 78.8 74.4 44 .4 0.1 4.4 5.0 14.7
2.1 96.7 76.9 75.0 34.4 0.0 4.4 5.6 18.3

“ Within a time limit of 300 seconds.
b Based on the best known lower bounds collected in the PSPLIB.

maximum number of iterations, only the best of the eight heuristics, the ge-
netic algorithm of Hartmann (1998), achieves a lower deviation (36.7%) than
our algorithm within the maximum allowed time.

Table 6 analyses the influence of the resource strength RS, the resource
factor RF, and the network complexity C on the difficulty of the problem in-
stances. For the four test sets, the table gives the percentage of problems with
a particular characteristic that could be solved to optimality and the average
deviation from the best known lower bounds collected in the corresponding
PSPLIB benchmark files. For example, line five of the table shows that 80.8%
of the problem instances with 120 activities that were generated with a re-
source strength of 0.5 could be solved to optimality, and the remaining aver-
age deviation from the lower bound for these problems was 0.8%. The data
shown in Table 6 confirms the results of earlier studies, see e.g. Kolisch (1995),
regarding the influence of the problem characteristics.

The table shows that the hardest problems are those with a low resource
strength. For a resource strength of 0.2, the percentage of problems that could
be solved to optimality sharply decreases with growing problem size; for the
lowest resource strength value of 0.1, only three of the problems with 120 ac-
tivities could be solved to optimality. Problems with RS > 0.7 appear to be
easy independent of problem size, and the benchmark lower bounds for these
instances are always tight. For RS = 0.5, we can observe that the percentage
of problems that can be solved remains roughly constant when the problem
size grows from 60 to 120 activities, although the time limit is not increased.

The influence of the resource factor is also clearly visible: problems become
harder as the average number of resource types required by an activity in-
creases. For example, for the minimal resource factor of 0.25, which means
that on average each activity requires only a single resource type, the algo-
rithm can solve 84.2% of the problems with 120 activities. As the resource
factor grows, the value drops to 19.2%.



Branch-and-bound algorithm for the RCPSP 431

The influence of the network complexity is not as significant as that of the
other two control parameters. While the results for test set j120 indicate that
the problems become more difficult with increasing network complexity, the
data for the smaller test sets is inconclusive.

As to be expected after examining Table 6, the hardest problems occur
when a low resource strength is combined with a high resource factor. For
example, roughly speaking, the 30.8% of the problems with 60 activities and a
resource strength of 0.2 that can be solved to optimality include all those in-
stances for which the resource factor takes a value of 0.25 and a few instances
with a resource factor of 0.5; the tables in Appendix B show detailed results
for each combination of the three control parameters. Intuitively, a low re-
source strength causes many activity pairs to be disjunctive and thus leads to
cliques of pairwise disjunctive activities of considerable size. Additionally, if
the average number of resource types required by an activity is high, then,
simply speaking, there are many “links” between the cliques induced by each
resource type. This combined effect leads to large and difficult disjunctive
sub-problems.

We also analysed in how many cases our algorithm could find values
matching a best known lower bound without being able to prove optimality
within the maximum allowed run time. We found that this occurs for none of
the instances in the test sets j60 and j90 and for only a single instance of the
test set j120. This means that even the best known lower bounds, if calculated
at the root of the search tree, would only marginally improve the results of our
algorithm. Also, it seems questionable if a re-calculation of bounds during the
search would pay off in terms of overall computation time. For example,
Klein (1999) has found that for his branch-and-bound algorithm the pruning
power of the bounds described by Klein and Scholl (1999b) does often not
outweigh the associated computational effort and does in general not lead to a
reduction of computation times.

We also experimented with a dominance rule based on storing partial
schedules, which is similar to the well known cutset rule described by De-
meulemeester and Herroelen (1992). While the use of this rule led to some
improvements, the overall effect for the larger test sets was rather small; for
example, when using this rule, only a single additional instance of the test
set j60 could be solved within the maximum time limit of 1800 seconds. Since
the performance of the rule within our algorithm was disappointing and be-
cause the rule cannot easily be adapted for generalisations of the problem
PS|prec|Cmax With arbitrary minimal and maximal time lags between activ-
ities, we did not further consider it in our study.

6 Conclusions

We have described a branch-and-bound algorithm for the problem
PS|prec|Cumax. The algorithm is based on an elementary time-oriented
branching scheme and uses constraint propagation techniques for reducing the
size of the search space. The search space is further restricted by enforcing
necessary conditions for active schedules and through a simple left-shift test.
Computational experiments with four large, systematically generated sets
of benchmark problems, ranging in size from 30 to 120 activities per problem
instance, indicate that the algorithm scales well and, especially for larger in-



432 U. Dorndorf et al.

stances, is competitive to other exact procedures for this problem. The results
for the largest test set show that the time truncated version of the algorithm
may be a useful heuristic for solving large real world project scheduling
problems. Surprisingly, many exact algorithms for the problem PS|prec|Cpax
have mainly been evaluated on the smallest of the four test sets. The good
performance of the time-oriented algorithm on the larger test sets is also in-
teresting because the algorithm does not include features such as partial
schedule based dominance pruning or explicit lower bound (re-)computation;
while these features often make exact algorithms perform well on the small
test set, they have the disadvantage that they are usually not easy to extend or
to adapt for generalised or modified versions of the problem PS|prec|Cuax.
We have also found that, for the larger test sets, even the use of the best
known lower bound values available in the benchmark files of the project
scheduling library PSPLIB would only marginally improve the results of the
algorithm with respect to the number of optimally solved problems.

The computational analysis has shown that the difficulty of the problem
instances for the algorithm depends primarily on the problem characteristics,
in particular on the combination of resource supply and demand as measured
by the resource strength and resource factor, and that the problem size is not
the most important factor. As the hardest problems are characterised by a
high share of disjunctive activities, we expect that the greatest further im-
provements may be achieved by concentrating on the disjunctive aspects of
the problem.

Acknowledgements. This research has been supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant Pe 514/7-2 and by the Friedrich Ebert Stiftung.

Appendix A

Proof (Proof of Lemma 1). Let S be an active schedule which i 1s domain fea-
sible in «. We have to prove that there exists an activity j € ¥/ («) satisfying
ES;j(o) = rcj(a). Since S; > ESj(a) > rcj(o), we only have to show that for
some j € 7/ (o) the 1dent1ty S; = rcj(oc) holds.

Suppose that S > re;(o) for all j € 7"/ («). It is always possible to choose
an activity j € 7/ ( ) with minimal start time in S. The choice of j implies that
all its predecessors have been scheduled at o, so that obviously

pej(S) =max{Si +pi[ (i, j) € 6} = max {Si+pi| (i, ]) € &} = pej().

et ¥ (a

As S is active we know from Equation (1) that S; = r¢;(S), so that we can
conclude r¢;(S) > re;(a). Since pc,(S) = pc;(a), the last inequation can only
hold if there is an activity i € 7"/ («) that finishes at time S; and consumes re-
sources required by j, which implies that S; < S;. This, however, contradicts
the fact that the start of j is minimal among all free activities.

Appendix B: Detailed computational results

Tables 7, 8, 9, and 10 show the detailed results of the time-oriented algorithm
for the problem sets with 30, 60, 90, and 120 activities, respectively. For each



Branch-and-bound algorithm for the RCPSP

Table 7. Results per problem group for test set j30

433

Group Parameters Optimal® dev.opt (%)
C RF RS
1 1.50 0.25 0.20 10 0.0
2 1.50 0.25 0.50 10 0.0
3 1.50 0.25 0.70 10 0.0
4 1.50 0.25 1.00 10 0.0
5 1.50 0.50 0.20 10 0.0
6 1.50 0.50 0.50 10 0.0
7 1.50 0.50 0.70 10 0.0
8 1.50 0.50 1.00 10 0.0
9 1.50 0.75 0.20 8 0.0
10 1.50 0.75 0.50 10 0.0
11 1.50 0.75 0.70 10 0.0
12 1.50 0.75 1.00 10 0.0
13 1.50 1.00 0.20 4 1.5
14 1.50 1.00 0.50 10 0.0
15 1.50 1.00 0.70 10 0.0
16 1.50 1.00 1.00 10 0.0
17 1.80 0.25 0.20 10 0.0
18 1.80 0.25 0.50 10 0.0
19 1.80 0.25 0.70 10 0.0
20 1.80 0.25 1.00 10 0.0
21 1.80 0.50 0.20 10 0.0
22 1.80 0.50 0.50 10 0.0
23 1.80 0.50 0.70 10 0.0
24 1.80 0.50 1.00 10 0.0
25 1.80 0.75 0.20 6 0.2
26 1.80 0.75 0.50 10 0.0
27 1.80 0.75 0.70 10 0.0
28 1.80 0.75 1.00 10 0.0
29 1.80 1.00 0.20 5 0.7
30 1.80 1.00 0.50 10 0.0
31 1.80 1.00 0.70 10 0.0
32 1.80 1.00 1.00 10 0.0
33 2.10 0.25 0.20 10 0.0
34 2.10 0.25 0.50 10 0.0
35 2.10 0.25 0.70 10 0.0
36 2.10 0.25 1.00 10 0.0
37 2.10 0.50 0.20 10 0.0
38 2.10 0.50 0.50 10 0.0
39 2.10 0.50 0.70 10 0.0
40 2.10 0.50 1.00 10 0.0
41 2.10 0.75 0.20 8 0.1
42 2.10 0.75 0.50 10 0.0
43 2.10 0.75 0.70 10 0.0
44 2.10 0.75 1.00 10 0.0
45 2.10 1.00 0.20 7 0.0
46 2.10 1.00 0.50 10 0.0
47 2.10 1.00 0.70 10 0.0
48 2.10 1.00 1.00 10 0.0

“ Within a time limit of 300 seconds.



434 U. Dorndorf et al.

Table 8. Results per problem group for test set j60

Group Parameters Optimal® dev.. 5" (%)
C RF RS
1 1.50 0.25 0.20 10 0.1
2 1.50 0.25 0.50 10 0.0
3 1.50 0.25 0.70 10 0.2
4 1.50 0.25 1.00 10 0.0
5 1.50 0.50 0.20 2 12.4
6 1.50 0.50 0.50 10 0.4
7 1.50 0.50 0.70 10 0.0
8 1.50 0.50 1.00 10 0.0
9 1.50 0.75 0.20 0 17.8
10 1.50 0.75 0.50 10 0.0
11 1.50 0.75 0.70 10 0.0
12 1.50 0.75 1.00 10 0.0
13 1.50 1.00 0.20 0 15.5
14 1.50 1.00 0.50 6 1.4
15 1.50 1.00 0.70 10 0.0
16 1.50 1.00 1.00 10 0.0
17 1.80 0.25 0.20 10 0.5
18 1.80 0.25 0.50 10 0.0
19 1.80 0.25 0.70 10 0.0
20 1.80 0.25 1.00 10 0.0
21 1.80 0.50 0.20 2 12.5
22 1.80 0.50 0.50 10 0.4
23 1.80 0.50 0.70 10 0.0
24 1.80 0.50 1.00 10 0.0
25 1.80 0.75 0.20 0 19.3
26 1.80 0.75 0.50 8 1.5
27 1.80 0.75 0.70 10 0.0
28 1.80 0.75 1.00 10 0.0
29 1.80 1.00 0.20 0 16.1
30 1.80 1.00 0.50 6 2.9
31 1.80 1.00 0.70 10 0.0
32 1.80 1.00 1.00 10 0.0
33 2.10 0.25 0.20 10 0.3
34 2.10 0.25 0.50 10 0.0
35 2.10 0.25 0.70 10 0.0
36 2.10 0.25 1.00 10 0.0
37 2.10 0.50 0.20 3 10.4
38 2.10 0.50 0.50 10 1.0
39 2.10 0.50 0.70 10 0.0
40 2.10 0.50 1.00 10 0.0
41 2.10 0.75 0.20 0 16.3
42 2.10 0.75 0.50 8 1.9
43 2.10 0.75 0.70 10 0.0
44 2.10 0.75 1.00 10 0.0
45 2.10 1.00 0.20 0 18.4
46 2.10 1.00 0.50 2 4.4
47 2.10 1.00 0.70 10 0.0
48 2.10 1.00 1.00 10 0.0

¢ Within a time limit of 300 seconds.
b Based on the best known lower bounds collected in the PSPLIB.



Branch-and-bound algorithm for the RCPSP

Table 9. Results per problem group for test set j90

435

Group Parameters Optimal® dev.. 5" (%)
C RF RS
1 1.50 0.25 0.20 7 2.1
2 1.50 0.25 0.50 10 0.0
3 1.50 0.25 0.70 10 0.0
4 1.50 0.25 1.00 10 0.0
5 1.50 0.50 0.20 0 14.6
6 1.50 0.50 0.50 9 0.4
7 1.50 0.50 0.70 10 0.0
8 1.50 0.50 1.00 10 0.0
9 1.50 0.75 0.20 0 18.3
10 1.50 0.75 0.50 10 0.0
11 1.50 0.75 0.70 10 0.0
12 1.50 0.75 1.00 10 0.0
13 1.50 1.00 0.20 0 154
14 1.50 1.00 0.50 10 0.0
15 1.50 1.00 0.70 10 0.0
16 1.50 1.00 1.00 10 0.0
17 1.80 0.25 0.20 8 2.0
18 1.80 0.25 0.50 10 0.0
19 1.80 0.25 0.70 10 0.0
20 1.80 0.25 1.00 10 0.0
21 1.80 0.50 0.20 0 19.8
22 1.80 0.50 0.50 9 0.2
23 1.80 0.50 0.70 10 0.0
24 1.80 0.50 1.00 10 0.0
25 1.80 0.75 0.20 0 19.0
26 1.80 0.75 0.50 5 1.5
27 1.80 0.75 0.70 10 0.0
28 1.80 0.75 1.00 10 0.0
29 1.80 1.00 0.20 0 15.6
30 1.80 1.00 0.50 7 1.4
31 1.80 1.00 0.70 10 0.0
32 1.80 1.00 1.00 10 0.0
33 2.10 0.25 0.20 9 1.5
34 2.10 0.25 0.50 10 0.2
35 2.10 0.25 0.70 10 0.0
36 2.10 0.25 1.00 10 0.0
37 2.10 0.50 0.20 0 19.7
38 2.10 0.50 0.50 10 0.5
39 2.10 0.50 0.70 10 0.0
40 2.10 0.50 1.00 10 0.0
41 2.10 0.75 0.20 0 21.3
42 2.10 0.75 0.50 6 2.7
43 2.10 0.75 0.70 10 0.0
44 2.10 0.75 1.00 10 0.0
45 2.10 1.00 0.20 0 18.4
46 2.10 1.00 0.50 5 2.7
47 2.10 1.00 0.70 10 0.0
48 2.10 1.00 1.00 10 0.0

¢ Within a time limit of 300 seconds.
b Based on the best known lower bounds collected in the PSPLIB.



436

Table 10. Results per problem group for test set j120

U. Dorndorf et al.

Group Parameters Optimal® dev.. 5" (%)
C RF RS
1 1.50 0.25 0.10 1 7.9
2 1.50 0.25 0.20 2 4.0
3 1.50 0.25 0.30 9 0.4
4 1.50 0.25 0.40 10 0.0
5 1.50 0.25 0.50 10 0.0
6 1.50 0.50 0.10 0 21.2
7 1.50 0.50 0.20 0 17.4
8 1.50 0.50 0.30 0 10.2
9 1.50 0.50 0.40 9 1.0
10 1.50 0.50 0.50 10 0.0
11 1.50 0.75 0.10 0 227
12 1.50 0.75 0.20 0 14.9
13 1.50 0.75 0.30 0 10.1
14 1.50 0.75 0.40 3 5.2
15 1.50 0.75 0.50 10 0.0
16 1.50 1.00 0.10 0 18.4
17 1.50 1.00 0.20 0 9.7
18 1.50 1.00 0.30 0 9.9
19 1.50 1.00 0.40 3 5.1
20 1.50 1.00 0.50 7 0.9
21 1.80 0.25 0.10 1 8.3
22 1.80 0.25 0.20 5 3.6
23 1.80 0.25 0.30 10 0.0
24 1.80 0.25 0.40 10 0.2
25 1.80 0.25 0.50 10 0.4
26 1.80 0.50 0.10 0 27.5
27 1.80 0.50 0.20 0 16.4
28 1.80 0.50 0.30 2 8.1
29 1.80 0.50 0.40 7 22
30 1.80 0.50 0.50 8 1.0
31 1.80 0.75 0.10 0 24.8
32 1.80 0.75 0.20 0 16.0
33 1.80 0.75 0.30 0 12.5
34 1.80 0.75 0.40 2 5.2
35 1.80 0.75 0.50 6 0.7
36 1.80 1.00 0.10 0 20.1
37 1.80 1.00 0.20 0 14.1
38 1.80 1.00 0.30 0 8.1
39 1.80 1.00 0.40 2 6.4
40 1.80 1.00 0.50 8 0.6
41 2.10 0.25 0.10 1 7.9
42 2.10 0.25 0.20 4 5.1
43 2.10 0.25 0.30 9 1.0
44 2.10 0.25 0.40 9 0.1
45 2.10 0.25 0.50 10 0.2
46 2.10 0.50 0.10 0 28.4
47 2.10 0.50 0.20 0 21.2
48 2.10 0.50 0.30 0 12.7
49 2.10 0.50 0.40 2 6.1
50 2.10 0.50 0.50 8 0.9
51 2.10 0.75 0.10 0 28.6
52 2.10 0.75 0.20 0 212
53 2.10 0.75 0.30 0 13.8



Branch-and-bound algorithm for the RCPSP 437

Table 10 (Continued)

Group Parameters Optimal® dev.. 5" (%)
C RF RS
54 2.10 0.75 0.40 2 7.6
55 2.10 0.75 0.50 7 1.3
56 2.10 1.00 0.10 0 229
57 2.10 1.00 0.20 0 17.1
58 2.10 1.00 0.30 0 12.5
59 2.10 1.00 0.40 0 7.3
60 2.10 1.00 0.50 3 3.9

“ Within a time limit of 300 seconds.
b Based on the best known lower bounds collected in the PSPLIB.

group of ten problem instances that were generated with the same parameter
settings, the tables show the number of problems solved to optimality within a
given time limit and the average deviation from the best known lower bound
taken from the corresponding PSPLIB benchmark file.

References

Baptiste P, Le Pape C, Nuijten WP (1999) Satisfiability tests and time-bound adjustments for
cumulative scheduling problems. Annals of Operations Research 92:305-333

Btazewicz J, Lenstra JK, Rinnooy Kan A (1983) Scheduling subject to resource constraints:
Classification and complexity. Discrete Applied Mathematics 5:11-24

Bron C, Kerbosch J (1973) Algorithm 457: Finding all cliques of an undireced graph. Communi-
cations of the ACM 16:575-577

Brucker P, Drexl A, Mohring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: Notation, classification, models, and methods. European Journal of Operational
Research 112:3-41

Brucker P, Knust S (1999) A linear programming and constraint propagation based lower bound
for the RCPSP. Tech. rep., University of Osnabriick

Brucker P, Knust S, Schoo A, Thiele O (1998) A branch and bound algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research 107:272—
288

Carlier J, Latapie B (1991) Une méthode arborescente pour résoudre les problémes cumulatifs.
RAIRO Recherche Opérationelle 25:311-340

Carlier J, Pinson E (1989) An algorithm for solving the job-shop problem. Management Science
35:164-176

Caseau Y, Laburthe F (1996) Cumulative scheduling with task intervals. In Proceedings of the
Joint International Conference on Logic Programming. MIT-Press

Demeulemeester EL, Herroelen WS (1992) A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Management Science 38:1803-1818

Demeulemeester EL, Herroelen WS (1997) New benchmark results for the resource-constrained
project scheduling problem. Management Science 43:1485-1492

Dorndorf U, Pesch E, Phan-Huy T (2000) Constraint propagation techniques for the disjunctive
scheduling problem. Artificial Intelligence 122:189-240

Dorndorf U, Phan-Huy T, Pesch E (1999) A survey of interval capacity consistency tests for time-
and resource-constrained scheduling. In Project Scheduling — Recent Models, Algorithms and
Applications, J. Weglarz, ed. Kluwer Academic Publishers, Boston, pages 213-238

Elmaghraby S (1977) Activity networks: Project planning and control by network models. Wiley,
New York



438 U. Dorndorf et al.

Elmaghraby S (1995) Activity nets: A guided tour through some recent developments. European
Journal of Operational Research 82:371-432

Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling.
Naval Research Logistics 45:733-750

Heilmann R, Schwindt C (1997) Lower bounds for RCPSP/max. Tech. Rep. WIOR-511, Uni-
versity of Karlsruhe

Heipcke S, Colombani Y (1997) A new constraint programming approach to large scale resource
constrained scheduling. In Third Workshop on Models and Algorithms for Planning and
Scheduling Problems, Cambridge, UK

Herroelen W, Demeulemeester E, De Reyck B (1998) Resource-constrained project scheduling:
A survey of recent developments. Computers & Operations Research 25:279-302

Herroelen W, Demeulemeester E, De Reyck B (1999) A classification scheme for project sched-
uling problems. In Project Scheduling — Recent Models, Algorithms and Applications,
J. Weglarz, ed. Kluwer Academic Publishers, Boston, pages 1-26

Johnson T (1967) An algorithm for the resource-constrained project scheduling problem. Ph.D.
thesis, Massachusets Institute of Technology

Klein R (1998) Bidirectional planning: Improving priority rule based heuristics for scheduling
resource-constrained projects. Tech. rep., Technical University of Darmstadt

Klein R (1999) Scheduling of resource-constrained projects. Ph.D. thesis, Technical University of
Darmstadt

Klein R, Scholl A (1998) Optimally solving the generalized resource-constrained project schedul-
ing problem. Tech. rep., Technical University of Darmstadt

Klein R, Scholl A (1999a) Scattered branch and bound — an adaptive search strategy applied to
resource-constrained project scheduling. Central European Journal of Operations Research
7:177-201

Klein R, Scholl A (1999b) Computing lower bounds by destructive improvement — an application
to resource-constrained project scheduling. European Journal of Operational Research
112:322-346

Kolisch R (1995) Project scheduling under resource constraints: Efficient heuristics for several
problem classes. Physica-Verlag, Heidelberg

Kolisch R, Hartmann S (1999) Heuristic algorithms for the resource-constrained project schedul-
ing problem: Classification and computational analysis. In Project Scheduling — Recent
Models, Algorithms and Applications, J. Weglarz, ed. Kluwer Academic Publishers, Boston,
pages 147-178

Kolisch R, Padman R (1997) An integrated survey of project scheduling. Tech. Rep. 463, Uni-
versity of Kiel

Kolisch R, Schwindt C, Sprecher A (1999) Benchmark instances for project scheduling problems.
In Project Scheduling — Recent Models, Algorithms and Applications, J. Weglarz, ed. Kluwer
Academic Publishers, Boston, pages 197-212

Kolisch R, Sprecher A (1996) PSPLIB - a project scheduling problem library. European Journal
of Operational Research 96:205-216

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Management Science 41:1693-1703

Kumar V (1992) Algorithms for constraint-satisfaction problems: A survey. A.l. Magazine 13:32-44

Le Pape C (1994) Implementation of resource constraints in ILOG SCHEDULE: A library for
the development of constraint-based scheduling systems. Intelligent Systems Engineering
3:55-66

Li R-Y, Willis J (1992) An iterative scheduling technique for resource-constrainted project
scheduling. European Journal of Operational Research 56:370-379

Lopez P, Erschler J, Esquirol P (1992) Ordonnancement de tiches sous contraintes: une approche
énergétique. RAIRO Automatique, Productique, Informatique Industrielle 26:453-481

Martin P, Shmoys DB (1996) A new approach to computing optimal schedules for the job-shop
scheduling problem. In Proceedings of the 5" International IPCO Conference

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource
constrained project scheduling problem based on a new mathematical formulation. Manage-
ment Science 44:715-729

Mohring RH, Schulz A, Stork F, Uetz M (1998) Resource constrained project scheduling: Com-
puting lower bounds by solving minimum cut problems. Tech. Rep. 620, Technical University
of Berlin



Branch-and-bound algorithm for the RCPSP 439

Nuijten WP (1994) Time and resource constrained scheduling: A constraint satisfaction approach.
Ph.D. thesis, Eindhoven University of Technology

Phan Huy T (1999) Constraint propagation in flexible manufacturing. Ph.D. thesis, University of
Bonn

Sprecher A (2000) Scheduling resource-constrained projects competitively at modest memory re-
quirements. Management Science 46:710—723

Talbot FB, Patterson JH (1978) An efficient integer programming algorithm with network cuts for
solving resource-constrained scheduling problems. Management Science 24:1163-1174

Tsang E (1993) Foundations of constraint satisfaction. Academic Press, London

Van Hentenryck P, Deville Y, Teng C (1992) A generic arc-consistency algorithm and its spe-
cializations. Artificial Intelligence 57:291-321

Waltz DL (1975) Understanding line drawings of scenes with shadows. In The Psychology of
Computer Vision, P. H. Winston, ed. McGraw-Hill, pages 19-91



